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FOREWORD

This volume, Volume I, presents an executive summary of the study "Mission

Roles for the Solar Electric Propulsion Stage (SEPS) with the Space Transporta-

tion System." The summary covers the study objectives, relation to other NASA

efforts, the principal results of the study, and suggested additional efforts.

In this summary, emphasis is placed on the rationale leading to the concepts

for the development and operations program which enhances the cost effective-

ness of SEPS operating with STS. The approach in describing design concepts

and configurations has been to emphasize the decision controlling factors and

selection criteria rather than description of design detail.

Mr. Robert Austin of the Marshall Space Flight Center was the Contracting

Officer's Representative for NASA. Mr. David M. Hammock was Northrop Services,

Inc.'s, Study Manager.

The study was conducted under Contract NAS8-30742. Funding was $130,000.

An understanding of the basic physics of the solar electric propulsion

thrusters and the basic physical and performance differences between solar

electric and chemical propulsion stages is essential to a proper assessment of

the results and recommendations of this study. A section of this volume is

therefore devoted to a brief, illustrative discussion of those factors.

The complete final study report is composed of 4 volumes:

Volume I Executive Summary

Volume II System Analysis and Evolution of Design and
Operational Concepts

Volume III Design Reference Mission Description and
Program Support Requirements

Volume IV Traffic Model and Flight Schedule Analysis
Techniques and Computer Programs.
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Section I

INTRODUCTION
1.1 GENERAL

The Solar Electric Propulsion Stage (SEPS) is a space propulsion stage

achieving high specific impulse (Isp) by the conversion of solar energy to

electrical energy which is used in an electrostatic particle accelerator to

produce a high velocity ion beam. A parallel beam of electrons is produced so

that diffusion of electrons into the ion beam converts it into a neutral plasma

jet obviating any space charge problems on the spacecraft or return flow of

positive ions to the spacecraft. A specific impulse of more than 30,000 seconds

is feasible with this general type of space propulsion system. The Isp range

that is desirable for missions presently contemplated for the period 1979 to

1991 appears to be 2,500 seconds to 5,000 seconds. Technology programs from

1967 to the present time have demonstrated long life and continuous operation,

in this Isp range, of flight suitable thrusters in laboratory tests and in

research vehicle flight tests.

Previous SEPS mission and system definition studies have concentrated

primarily on planetary exploration. As the Space Transportation System (STS)

and its mission employment was defined in greater detail, it became obvious

that a SEPS type vehicle with its high Isp, relatively unlimited stay time in

space, small propellant weight requirement, and operational flexibility would

greatly augment the Shuttle, IUS (Interim Upper Stage), and Tug capabilities

in the areas of high energy transport, orbital taxi functions, and servicing

functions.

The National Aeronautics and Space Administration (NASA), entering in 1974

that phase of SEPS concept definition where significant funding would be com-

mitted to design definition and Supporting Research and Technology (SRT) pro-

jects oriented to specific SEPS configuration concepts, considered it an

appropriate time to:

* Critically review design defining trade studies and "optimization"
results of past studies

1-1
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* Ensure that system requirements and "baseline" system configuration
characteristics derived from past studies were valid

* Ensure credibility of the cost effectiveness of SEPS as an added
element of STS.

Therefore, NASA, through its George C. Marshall Space Flight Center,

implemented the "Mission Roles for SEPS with the Space Transportation System"

study to quantify SEPS potential capabilities and transportation cost savings.

1.2 STUDY OBJECTIVES

The primary objectives of the SEPS study were to:

* Define mission roles that are major contributors to transportation
cost reduction when SEPS is operated as an element of the Space
Transportation System

* Generate concepts for and perform operations analyses on:

* Payload exchanges with Shuttle, IUS, and Tug

* Multiple payload deployment and retrieval

* Payload maintenance and servicing in space

* Develop conceptual designs of payload handling and servicing
equipment

* Identify SEPS interfaces with Shuttle, IUS, Tug, ground flight con-
trol centers, and launch support systems

* Define requirements not identified in prior studies and assess
resultant design impacts on subsystems proposed in earlier studies.

Contributing secondary objectives of the SEPS study were to:

* Quantify transport cost effectiveness of SEPS with STS relative to a
NASA supplied mission model

* Define a system operational profile with individual payloads assigned
to specific flights which were to occur on specific dates

* Identify operational requirements and define SEPS program support

* Establish SEPS transport performance and show potential for
improvement

* Identify benefits to IUS, Tug, and payload operations resulting from
SEPS use

* Estimate operational costs of SEPS

* Identify problem areas for future investigation.

1-2
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1.3 RELATIONS TO OTHER NASA EFFORTS

The reference mission model for quantifying the transportation cost

savings and the definition of the "baseline" STS without SEPS were generated

by the Marshall Space Flight Center. The "baseline" SEPS configuration ground

rule for this study was the culmination of 3 years of NASA sponsored studies

by Rockwell International Space Division, as generally defined in the final

reports of their two latest studies*.

The performance of the power conversion units and thruster elements were

based upon values from the Lewis Research Center's thruster subsystem control

documents provided by MSFC in June 1974. Mr. Charles H. Guttman, MSFC, was

the Contracting Officer's Representative for the Rockwell International Space

Division studies.

Concurrent NASA in-house technology programs and other NASA sponsored

studies contributing to the data base for this study were:

* Lewis Research Center's ongoing technology programs in solar electric
propulsion power processors and thrusters

* Jet Propulsion Laboratory's thruster subsystem integration programs

* MSFC's ongoing programs in solar arrays and navigation and guidance
analysis

* MSFC's Baseline Space Tug System Definition

0 Hughes Research Labs and TRW's engineering model development and
improvement programs for thrusters and power processors under Lewis
Research Center sponsorship

0 McDonnell Douglas' "Payload Utilization of Tug" and Follow-On
(NAS9-29743 MSFC) and "IUS/Tug Payload Requirements Compatibility
Study" (NAS9-31013 MSFC)

* International Business Machine's IUS/Tug Orbital Operations and
Mission Support Study

• NASA supplied STS (other than SEPS) operational cost data.

(1) Feasibility Study of A Solar Electric Propulsion Stage for Geosynchronous
Equatorial Missions, DRL No. MA04 DPD304, Contract NAS8-27360, dated
February 1973.

(2) Extended Definition Feasibility Study for a SEPS Concept Definition,
DR No. MA04 DPD369, dated December 21, 1973.

1-3-
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1.4 STUDY APPROACH

The study effort was divided into five principal tasks. The systematic

output of the tasks at a given level of detail allowed selection of competing

concepts with a minimum of effort defining details of concepts later to be

rejected. Successive iterations of the study were used to improve the concept

of the selected system approach and to improve the accuracy of quantitative

values used to support certain decisions.

The five study tasks were:

1. Mission Roles Identification and Analysis/STS Baseline Configuration
Selection

2. Mission Operations and Systems Requirements Analysis

3. System and Subsystem Design Impacts Analysis

4. Interface Analysis

5. Cost Analysis.

The first step in establishing the transportation cost effectiveness of

SEPS was to establish the maximum credible performance (minimum number of

Shuttle flights) of STS without SEPS as the reference base for cost comparisons.

To do this, NSI evaluated transportation capabilities of the NASA defined base-

line STS in operational modes that would maximize its transportation efficiency.

NSI assumed modified forms of operational modes and equipment concepts evolved

for STS with SEPS that, if applied to baseline STS, would justify removal of

arbitrary restrictions on the number of payloads that could be carried on any

flight.

The sensitivity of cost savings to various operational constraints (such

as multiple payload packaging restraints and arbitrary restrictions of numbers

of payloads on a given flight that had been used in other studies) were deter-

mined. Transportation cost savings resulting from more compact Tug designs,

higher Isp in SEPS, and higher SEPS power were investigated.

A concerted attempt to compare maximum capability STS operation to maxi-

mum capability STS with SEPS was made so that the transportation cost savings

1-4
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attributed to SEPS would be conservatively based and as realistic as the

reference mission model.

In Task II, design reference mission descriptions were generated to estab-

lish design requirements for flight articles and to define ground support

requirements for the flight operations. Operational modes, organizations, and

facility concepts that would minimize the cost for total SEPS Program Support

were generated and defined.

In Tasks III and IV, new approaches (and new applications of older ones)

were conceived for SEPS payload transport, handling, and servicing functions.

New approaches were conceived for General Purpose Mission Equipment (GPME) for

Tug and IUS that simplified IUS/Tug operations. Conceptual designs of the

equipment required by the approaches were developed.

Interfaces between SEPS and other STS elements and payloads were identi-

fied and defined to the extent warranted by the present level of design defini-

tion of the elements, (or to the extent necessary to identify the desirable

characteristics of the interface).

Assessments were conducted of technology areas that would have significant

influence on the recommended SEPS and GPME configuration or on their operational

modes with the STS.

Task V original study requirements were to update NASA supplied "baseline"

SEPS program costs by generating cost deltas resulting from the study recommended

changes to SEPS baseline subsystem. Recommendations from this study and NASA

in-house activities indicated that the baseline would be so changed that cost

delta related to it would not be meaningful. A better approach to costing was

to generate new independent cost estimates. Estimated program costs were

significantly reduced by new configurations and new operational modes evolved

during this study.

1-5
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1.5 STUDY LIMITATIONS

The range of technical, operations, and programmatic factors the study

covered was quite broad. Effort was therefore concentrated largely on decision

controlling factors. Many interesting but nondecision critical details could

not be investigated.

Certain areas of the study were limited by the following guidelines or

constraints:

* Cost effectiveness of SEPS was limited solely to STS transport cost
savings for accomplishment of "The October 1973 Space Shuttle Traffic
Model," NASA TMX-64751, Revision 2, dated January 1974. No cost
advantage of other SEPS mission capabilities such as on-orbit ser-
vicing, maneuvering payloads in orbit, or the great increase in allow-
able payload weights for high energy earth orbit missions and plane-
tary missions was considered. The mission model covers the years from
1981 to 1991.

* The "baseline" STS was defined as the Shuttle, an expendable transtage
(IUS) through 1983 and the MSFC (June 1974) baseline Tug from 1984
to 1991.

* Planetary mission roles were not investigated except to ensure that
configurations and characteristics defined for the SEPS earth orbital
functions would provide equal or enhanced planetary mission capabil-
ities relative to the NASA supplied baseline SEPS configuration.

1-6
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Section II

SIGNIFICANT SYSTEM CHARACTERISTICS
AND STUDY CONCLUSIONS

Solar electric propulsion stages have radically different physical and

performance characteristics than the familiar chemical propulsion stages.

These characteristics influence every facet of the associated development and

operations phases. Although the difference in physical characteristics is

rather obvious, the tremendous potential gains from exploiting those differences

(and some limitations) are often overlooked even by experienced space system

planners and concept evaluators.

Depending upon the evaluator's recognition of the influence of certain

physical and performance differences of SEPS and conventional stages, the

conclusions and other results of this study may be accepted as so obvious as

to hardly warrant their statement, or may be summarily rejected.

Because of these factors, the following rather unorthodox order of presen-

tation will be used:

* Primary characteristics and resulting first order influences of
system differences

* Study conclusions

* System concepts and data generated

* Technology assessments.

2.1 PRIMARY CHARACTERISTICS AND INFLUENCES

isp AND THRUST

The feasible range of specific impulse (Isp) for mercury ion systems is

2,000 to 30,000 seconds. Demonstrated designs for SEPS operate in the 2,000-

to 5,000-second range. For negligible weight and cost penalty, selectable

high thrust and low Isp, or high Isp and low thrust operating modes can be

designed into the system. Selection of the combination best suited to each

mission phase can be made in flight.

2-1
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The potential of SEPS high Isp can be inferred from the following compari-

sons. A characteristic high performance (450-second Isp) Space Tug configura-

tion with 22,676 kg of 02/H2 propellants and a 2,585 kg inert weight can provide

a 1,814 kg payload a 8,016 m/sec change in velocity. A 3,000 second Isp SEPS

with 959 kg of mercury propellant and a burnout weight of 1,247 kg can provide

the same AV to a similar 2,585 kg payload. The SEPS loaded weight (2,206 kg)

is only 9 percent of the chemical stage weight 25,260 kg.

That AV is approximately the AV for a round trip from Shuttle orbit to

geosynch and return. If that were the mission and SEPS executed it, SEPS low

thrust would result in "gravity losses" such that its idealized A requirement

is 1.5 times an impulse stage's AV or 12,024 m/sec. For the SEPS to accom-

plish that AV its initial weight would be 2,794 kg (11 percent of the chemical

stage mass) and it would have to tank 1,516 kg of Hg.

The specific impulse of ion thrusters is proportional to the square root

of the screen voltage (Vs ). SEPS specific impulse can be increased by

operating at higher thruster screen voltages. Assume we operate at two times

the screen voltage of the 3,000 sec SEPS. Isp is nowf2 x 3,000 seconds = 4,243

seconds. Initial stage weight is only 2,273 kg, and only 1,026 kg of Hg had to

be tanked.

SEPS receives its energy from the sun, so increasing the energy per unit

mass of propellant (increasing Isp) in order to reduce the total required pro-

pellant for a mission will reduce the initial total weight, but will increase

the mission time. To shorten trip times, SEPS energy collection and conversion

rate to electrical power must be increased. Within ranges of interest for

SEPS, power is limited only by the cost of solar arrays required to produce the

higher power levels. Masses increase but they are within launch capability of

STS single flights for SEPS range of interest.

As a result of the physical phenomena by which SEPS functions, it has

the unique capability to trade increased mission accomplishment time against

reduced gross weight as was just illustrated. Its mercury propellant is so

dense (specific gravity over 13) and tank pressures so low (703 kg/m 2 ) that

2-2
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excess capacity tanks can be designed into the systems for a minor increased

inert mass penalty. If this is done, unexpected increases in payload masses

or more demanding total impulse missions, not originally planned for the SEPS,

can be accomplished simply by allowing longer times for accomplishing the

missions and tanking more propellant at initiation of the mission.

In the power ranges desirable for the 1984 to 1991 time frame (25 kw up

to 100 kw), the power level chosen for development has relatively small influ.-

ence on the development cost of the system. SEPS capability as a transport

stage is almost directly proportional to its power level in the range of

interest.

Solar arrays do represent a significant part of the production cost of

the complete stage at present day solar cell prices. As indicated in sub-

section 2.7, increased power levels also enhance planetary mission capabilities.

BASIC PROPULSION POWER CONVERSION CONSIDERATIONS

The SEPS thruster is a simple electrostatic charged particle accelerator

as shown schematically on Figure 2-1. The operating Isp, proportional to Vs,

is set by the voltage level of the screens. The thrust level and current flow

are dominantly responsive to the ion density of the plasma in the internal

enclosure of the thrusters. Therefore, primary thrust control is by control

of the temperature of main and cathode mercury propellant vaporizers which

will determine the plasma pressure inside the thrusters.

Of the total electrical power to the thruster, 80 to 90 percent (depending

on screen voltage) goes into ion beam energy. This "screen power" needs to be

direct current, relatively free of ripple currents and at approximately the

voltage corresponding to the Isp desired for the particular mission or mission

phase. The solar arrays are nearly ideal sources for direct supply of this

power. Their use avoids loss of power due to processor inefficiencies and

reduces weight and cost associated with screen power processing. Volume II,

subsection 6.7 discusses related factors in more detail.

2-3
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Figure 2-1. SEPS THRUSTER SCHEMATIC
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PHYSICAL SIZE AND TEST CHARACTERISTICS INFLUENCING SUPPORT REQUIREMENTS

The SEPS dimensions when packaged for transportation or in the launch con-

figuration are 3m by 3m by 5m. A variety of surface or air transport options

exist for transport from manufacturing site to operations support center and

to launch site without requirement of special vehicles or handling gear.

The SEPS is essentially an electrical device with relatively simple

mechanical subsystems. No expensive test devices, other than vacuum chambers

now in existence and used only for initial thruster subsystem acceptance tests

and for Design, Development, Test, and Evaluation (DDT&E) tests, are required.

The operational and sustaining engineering force and facilities required for

SEPS total program support is therefore small.

2.2 THE SPACE TRANSPORTATION SYSTEM WITH SEPS AS A TRANSPORT ELEMENT

The system elements are shown on Figure 2-2. No physical changes or addi-

tions to the Shuttle are required for SEPS operation in the system. A standard

family of "kick stages" should not be defined until more detail exists on the

CORE SEPS

EO AVIONICS REPLENISHMENT KIT

MAST/MANIPULATOR
SYSTEM KIT

SEPS RELA TED ELEMENTS

STS AND GENERAL PURPOSE MISSION EQUIPMENT

ORBITER U PAYLOAD MOUNTING RTIE TAMSORED
INTERFACE STANDARD
LONGERON STANDARD KICK STAGE DIAPHRAGMS

+FAMILY OF SRMS

TRANSPORT SHELL

INTERIM
UPPER STAGE BASE LINE

TUG
SHUTTLE

Figure 2-2. STS WITH SEPS SYSTEM ELEMENTS
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character of payloads and specific mission requirements. For this study, a

representative kick stage that could be fitted with different numbers of solid

rocket motors was assumed. For earth orbital missions, SEPS eliminates the

need for any kick stages or payload velocity addition ability in the payloads

themselves for achieving initial mission position; or for retrieval of payloads

after mission accomplishment. For other missions, planetary and earth escape,

SEPS reduces auxiliary propulsion performance requirements without placing any

demands or constraints on the kick stages. SEPS offers the potential for

recovery of Tug instead of expending it for many missions, but the scope of

this study did not allow investigation of that potential.

The study ground rules supplied by NASA defined an Interim Upper Stage

(IUS) which is a "stretched tank" transtage for use through 1983 and a baseline

Space Tug defined by MSFC for use from 1984 onward.

SEPS requires no characteristics of these vehicles that are not required

for their missions when operated independently of SEPS. Because SEPS can

always accomplish the remaining portions of any combined SEPS plus IUS or Tug

missions by extending the trip time, SEPS removes the development schedule and

cost risks that are associated with meeting burnout weight and propulsion per-

formance goals from the IUS and Tug programs.

The system characteristics and programmatic cost factors identified in

this study indicate that a single core SEPS vehicle should be developed. NASA

has directed that this study concentrate on the operations characteristics of

a 25 kw power level SEPS. NSI, for reasons to be described later under prin-

cipal trade studies, believes that greater power levels are desirable. Except

for trade study discussions, all SEPS configuration, performance, and opera-

tions characteristics discussed in this volume are those of a 25 kw power level
configuration.

The core vehicle is produced in a single continuous production run to

minimize production cost of the 11 flight articles and one test article which
is refurbished to provide the second spare vehicle for the program. There are

eight SEPS committed to planetary missions, two to earth orbital missions,
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and two as program spares counting the refurbished test article 
spare as a

spare. The four planetary missions, accomplished with the SEPS back-to-back

flights are: 1981 Encke Rendezvous, 1981 Jupiter Orbiter, 1986 Asteroid

Rendezvous, and 1987 Mercury Orbiter. For some planetary missions the core

vehicle is fitted with a larger phased array antenna and some mission special-

ized sensors. The communication, navigation and guidance, and data management

subsystems of the core vehicle are standard although they are operated in

different modes for the planetary mission and the earth orbital missions.

Major blocks of the software are naturally different.

The extendable payload mast and manipulator system kit for earth orbital

operations provides near universal adaptability for in-space handling, ser-

vicing, retrieval, and maintenance of payloads without forcing severe configu-

ration or geometric arrangement constraints on payload developers. The total

mass of the subsystem is 126 kg. Programs and specific sortie data stored

with SEPS control computer prevent human operators from commanding manipulator

functions that could cause equipment damage and allow simplified manipulator

hand steering to desired locations. The combined mechanisms required for the

full range of payload servicing, maintenance, and multiple payload transport

functions is simpler with manipulators than with any other system that provides

even the basic capabilities in each of the stated areas.

For the earth orbital kit the avionics system contains four TV cameras,

two located on the manipulator arms and two located on the scanning platforms

with other core vehicle navigation and guidance sensors. The earth orbital

function utilizes a scanning LADAR for rendezvous with payloads and other

elements of the STS. The core SEPS is capable of autonomous navigation and

guidance on planetary missions. With the addition of horizon sensors or an

Interferometric Landmark Tracker (ILT), the SEPS has autonomous navigation and

guidance capability for earth orbit missions. SEPS can establish its position

to about 1 kilometer and its velocity to about 0.1 meter per second.

Economy of STS operation to accomplish the total NASA supplied reference

mission model in the years 1981 to 1991 demands multiple payload deployments

on each Tug-Shuttle flight. For example, 83 percent of the payloads requiring

upper stages can be arranged in flight manifests for a Shuttle comprising five
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or more individual payloads. Figure 2-3

10 shows 'frequency of occurrence of Shuttle
9 83% 4OR MORE

8 .. 47% 5ORMORE flight manifests versus number of indi-

6 vidual payloads on the manifest. On

4 isome flights some of these individual
.3

2 payloads go to intermediate orbits and
0 are not transported by SEPS.

0 1 2 3 4 5 6 7 8 9

HISTOGRAM - NUMBERS OF PAYLOADS IN SHUTTLE UP MANIFESTS In order to isolate Shuttle andIn order to isolate Shuttle and
Tug operations from the potential delays

9 ii I iliiMORE of launch preparation associated with

integration of four or more payloads

into a single launch package and toU 4

provide payload users with simple, easy

access to their payloads, NSI generated

S2 3 6 the standard transport shell and pay-
O HISTOGRAM - NUMBERS OF PAYLOADS IN

SHUTTLE MWN MANIFESTS load mounting diaphragm concept shown

Z on Figure 2-2. This concept allows all
3 ipayloads for a specific flight to be

05 integrated into a single package prior

0 1 3 4 5 6 to mating the package to the Tug. The
HISTOGRAM - SHUTTLE DOWN PAYLOADS IN
COMBINATION WITH FOUR UP Tug plus "package" is then mated to the

Orbiter as a single payload.

Since each payload is mounted

directly to a diaphragm, interactions
0 1 2 3 4 5 6
HISTOGRAM - OWN PAYOADS IN between the individual payloads are
COMBINATION WITH FIVE UP

minimized, and access to individual
4

3 payloads is simplified.
2

o ... .The payload transport shell is a
0 1 2 3 4

HISTOGRAM - DOWN PAYLOADS IN lightweight half cylinder, honeycomb
COMBINATION WITH SIX UP

core, monocoque structure. To meet the
Figure 2-3. FREQUENCY OF OCCURRENCE Orbiter crash safety load requirement

VERSUS NUMBER OF INDIVIDUAL
PAYLOADS IN CARGO MANIFESTS (9g longitudinally) without causing
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large weight increases in the Tug, the shell is designed to transmit inertial

loads from the masses attached to payload mounting diaphragms to the Orbiter's

payload support longeron through an adapter longeron. This adapter longeron

distributes the inertia induced crash loads over some 9 meters of Orbiter

longeron on each side of the Orbiter's cargo bay. Each individual fastener

load remains within the Orbiter design limit.

The adapter longeron shears the 9g longitudinal crash load out through

9 meters of corrugations along each upper edge of the payload half shell. No

concentrated load points are required between the adapter and the shell, there-

fore minimizing shell weight. The transport shells can be designed to have

splice provisions so that short shells can be flown. The standard diaphragms

for payload mounting have multiple payload mount structural attach points and

are reusable GPME. Specially tailored payload mount diaphragms are fabricated

for those infrequent conditions where unusual payload attach requirements exist.

By NASA direction, for program planning purposes.SEPS is assumed to have

an operational onorbit lifetime of 5 years or the lifetime dictated by accu-

mulation of 20,000 operational hours on each thruster. Commercial satellite

systems are presently being designed for 10-year onorbit lifetimes. SEPS vital

function subsystems either have inherent high levels of redundancy (thruster

subsystem and arrays) or can be designed for both high redundancy and high

reliability. Because of SEPS' high specific impulse propulsion system, weight

increases that serve to increase reliability can be readily accepted. If a

diligent technology program aimed at increasing thruster lifetime is pursued,

NSI believes SEPS potential onorbit lifetime can be extended to 10 years.

SEPS has only two expendables, the main propellant (mercury), and the

attitude control system propellant (N2 H4). Both propellant supply subsystems

are N2 accumulator pressurized so that replenishment may be accomplished by

simply forcing propellant from the replenishing tank into the depleted storage

tanks which recompresses the expulsion gases during the replenishment. The

SEPS manipulators provide the inherent ability for self-servicing on any pay-

load delivery mission where Tug brings an expendables replenishment kit up with

the payload group to be transferred to SEPS. SEPS should be developed for in-

flight replenishment of expendables to exploit its potentially high reliability

and its 5- to 10-year operational lifetime.
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2.3 SEPS CONFIGURATION AND FUNCTIONAL CHARACTERISTICS

The foregoing discussions described the elements composing an STS plus

SEPS transport system. At the beginning of any discussion on SEPS configura-

tion, several factors should be emphasized. The active elements of SEPS are

very compact. Once operational in space the greatest acceleration that SEPS

is ever exposed to results from its attitude control system thrusters. Their

absolute thrust level requirement for control docking is extremely low. The

level is therefore chosen based on accelerations that make for operator con-

venience and reduce the time that mission control centers must be involved in

SEPS operations. Peak accelerations from the ACS system thrusters are in the

range of 0.002 to 0.01 g depending on the masses of attached payloads and on-

board propellant. Any desired deployed geometry in space can therefore be

implemented at a very small penalty in structural mass increase. The active

elements of SEPS have no preferential orientation except to meet the condition

that solar arrays should be oriented normal to the sunline and radiation cool-

ing panels should be oriented to dark space for nominal cruise conditions.

Many equally attractive arrangements of SEPS power production and thrust pro-

ducing components are possible.

The decision controlling factors regarding SEPS overall characteristics,

therefore, are primarily related to the functional interfaces with payloads

and STS General Purpose Mission Equipment (GPME). In summary form, the deci-

sion controlling factors are:

* STS transportation efficiency depends on multiple payload deliveries
and multiple retrievals

* Cost effectiveness requires that GPME be usable on successive flights
without modification and with few special payload adapter items

* The GPME must simplify Shuttle-Tug operations

* Multiple payload transport must place minimum constraints on payload
designers

* SEPS staytime in space is limited only by wear out. To exploit this
capability the design should provide for easy replenishment of expend-
ables

* GPME mass increase to simplify other STS operations does not reduce
SEPS + Tug net payload capability; modest trip time increases allow
SEPS to makeup for Tug's lower payload transfer orbit ability
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* SEPS capabilities are almost directly proportional to design power
level in the range from 20 to 100 kw. In this power range, develop-
ment costs are only slightly influenced by power level.

With the characteristic controlling factors identified, selection of cri-

teria for choosing a SEPS configuration must be established. Configuration in

this context refers to what characteristics are to be implemented and at what

power level for thruster subsystems. These criteria derive from national and

NASA policy decisions rather than technical fact. No configuration choice is

defensible without final reference to these criteria. The configuration

selection criteria are to configure for:

* The minimum to meet absolute mission needs or some reference mission
model existing on a certain date, or

* Cost effectiveness against a reference mission model considering only
transport vehicle operational cost savings, or

0 Configure for total cost effectiveness plus those low cost character-
istics that greatly enhance functional capability and mission versa-
tility, since mission models and payload concepts are at present
inadequately defined and are constantly changing as the value of new
missions and concepts are recognized.

Based on the analyses of this study, the foregoing decision factors, and

NSI's belief that the third criteria above is the logical criteria choice, the

conclusions regarding SEPS configuration and Space Transportation System GPME

associated with SEPS sorties are:

* A standard payload transport shell to facilitate Tug handling of
independently mounted multiple payloads should be developed.

* A manipulator/extendable payload support mast system for SEPS will
result in low operational cost and impose the minimum design con-
straints on payload developers.*

* Screen power direct from the solar arrays with inherent Isp option to
match specific mission requirements will reduce the size of required
solar arrays for a given thrust, improve reliability, and reduce
thermal control panel size.

*A detectable mission kit of these items for Tug would provide desirable capa-

bility for quick response services.
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SEPS transportation capability within a specified trip time is almost
directly proportional to power. SEPS development costs are only
slightly increased by power level and operational costs are reduced.
SEPS should be developed with a power level of 50 kw or more.

The basic configuration recommended for SEPS and GPME is shown on Figure

2-4 which shows the transfer of a set of payloads from IUS to SEPS payload

transport mast. Figures 2-5 and 2-6 show additional details. To illustrate

the recommended system's capability, one of the sorties from the baseline 25 kw

SEPS System Operational Profile will be briefly described. The sortie is sortie

No. 4, and it begins in January of 1983. The Interim Upper Stage (IUS) brings

7 payloads up to payload transfer orbit to meet SEPS. The 7 net payload masses

SEPS will deploy at its final mission destination total about 3,860 kg. The

envelope dimensions of the payloads are as defined in the NASA supplied ref-

erence mission model are depicted as various size cylinders on Figure 2-4.

The expendable IUS without SEPS could deliver only about one-half this

net payload weight to geosynchronous orbit and would have to deploy all pay-

loads at one point. Each payload would therefore have to be designed to

independently maneuver to its final mission destination. Without SEPS, two

IUS plus Shuttle flights would be required to deploy these seven payloads.

After completion of sortie #3 SEPS had been dormant in geosynchronous

orbit awaiting commands to initiate sortie #4. The SEPS cruises down to the

elliptical rendezvous orbit (18,520 km perigee by 47,967 km apogee) was initi-

ated some 17 days previously. In accordance with the mission plan, Shuttle

with IUS and payloads was launched and through the standard mission procedures

IUS was targeted on the known conditions of SEPS. IUS achieves the target

conditions within its navigation and guidance system accuracy.

Ground track may order an IUS correction or SEPS may initiate final

rendezvous action immediately after acquisition of IUS by SEPS TV systems, or
by the laser radar (LADAR). These systems have acquisition ranges of approxi-

mately 7,223 and 2,593 kilometers respectively, in passive acquisition modes

with the targets are sunlit.
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To shorten rendezvous times SEPS will use a combination of its chemical

Attitude Control System (ACS) and ion propulsion system thrusters. SEPS will

be the active partner in the rendezvous and payload transfer operation with

IUS.*

SEPS closes on the IUS which is passive but in an attitude hold mode.

Closing is based on range, range rate, and line of sight data from the LADAR

and the scan platform mounted TV system.

At the option of the SEPS Operations Center (SEPSOC) flight control final

approach maneuvers are controlled by onboard systems in an autonomous manner

or by a payload transfer controller in SEPSOC.

Final closing is accomplished in a parallel or other nonintersecting

velocity vector mode so that human or other errors cannot result in cata-

strophic collisions. When on station alongside Tug or IUS, the ground command

pilot steers a manipulator end effector (hand) out to position to grasp the

payload shell. Views from TV cameras, body mounted on SEPS and on each manip-

ulator arm, are employed as visual aids in accomplishing this action. After

the manipulator "hand" grasping the payload shell has been clamped, the atti-

tude control system of both vehicles are deactivated to conserve propellants.

If a preferred space orientation is desired for any reason, such as a special

lighting effect, one of the vehicle's ACS would hold attitude. The manipulator

arm holds the vehicles in their original relative geometric positions.

The other manipulator hand is steered to one side of the transport shell

to release the latch holding the diaphragm to which the first group of payloads

are mounted. The manipulator then deploys a paylaod mast clamp on the dia-

phragm, releases the payload umbilical through which the IUS/Tug supplied the pay

payload electrical and data system connections, and then releases the diamet-

rically opposite latch and grasps the diaphragm for transfer of the first

load set to the payload transport mast.

*For this operation with Tug, Tug will be the active partner until station
alongside SEPS at 100 to 300 meters is achieved. After this time SEPS is the
active partner until completion of the mission.
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The payload transport mast comprises a pair of preformed biconvex sections

edge welded so that, when wound on a drum, the edge welded sections collapse

into parallel metal ribbons held on the drum by the combination of winding

tension and forces resulting from the geometry of the housing. When the drum

is driven in the (unwind) extend mast direction the ribbons spring to their

preformed shape. The biconvex sections designed by rigidity criteria are

suprisingly strong in bending (3,360 nautical miles) and have high torsional

rigidity because of the edge welding of the ribbons. Nominal loads from ACS

firing and diaphragm attachment are about 3 percent of this capability.

This payload transport mast is commanded out to any position required for

the mounting of both payload sets. The diaphragms have spring loaded clamps

that lock onto the mast when pushed against it.

The manipulator grasps the diaphragm containing the first payload set at

a location where the TV camera on the arm can be slewed so that its field of

view contains the diaphragm edge where the mast clamp is located. The payload

transfer controller (teleoperator) commands the manipulator to lift the payload

set out and place it on the payload mast. The visual aids provided are the

scan platform mounted TV on the mast side, the scan platform mounted TV on the

manipulator side, the TV on the back of the manipulator hand holding the

payload shell (which can be slewed to see along or into the IUS-payload shell)

and the previously mentioned TV on the back of the manipulator holding the

diaphragm.

The manipulators detailed joint motion and arm segment positions required

to achieve "hand" motion along a desired path are controlled by the computer.

The ground controller flies the "hand" in the sense that he commands transla-

tional rates of the hand and rotational rates about its three rotational axes.

The computer also provides damage avoidance by forbidding any geometry of the

arms that will cause contact of the arms to SEPS or payloads, or contact of

the payloads being translated to SEPS elements or other payloads already

mounted on SEPS. The computer also prevents acceleration of masses being
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translated by the arms to velocities greater than those the manipulator system

can break before the mass contacts any element of the combined spacecraft and

payloads system.

The system has flexibility in the degree of automation which can be

selected for any operation. For example, if after the first hand is steered

to grasp the payload shell at the beginning of the transfer function, the

grasp position is given to the computer along with the shell geometry, payload

simplified geometry, initial diaphragm positions in the payload shell, and

desired attach locations on the SEPS transport mast, then the computer from

stored programs and stored SEPS geometry could execute the desired payload

transfers without active participation by ground controllers. The man con-

troller can override and perform a function or part of a function at any time

and then return command of the transfer to the computer as long as he inputs

to the computer what part of the total cycle he has completed while he con-

trolled the system.

Trade studies which led to choice of this system as the simplest for the

combined functions of transport, deployment, retrieval, transfer, and servicing

of payloads are summarized in Volume II of this report, with a more detailed

description of the design concept.

The manipulators provide SEPS an inherent capability for self-assisted

replenishment of the ACS and mercury propellants. Design concepts for imple-

mentation of this ability are presented in Volume II.

After SEPS has completed the payload transfer operation, the manipulator

still holding the payload shell and attached IUS is used to push the space

vehicles apart so that neither vehicle's ACS thrusters are used. After the

vehicles have separated adequately, if the mission were conducted with Tug,

Tug begins preparation for initiating the phasing orbit and transfer orbit

maneuvers to return it to the Orbiter.
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SEPS initiates cruise mode. For the sortie payload group used on Figure

2-4, it requires 57 days to achieve geosynchronous orbit. SEPS' proposed

navigation and guidance system comprised of IMU, Startrackers, horizon sensors,

(or Interferometric Landmark Tracker), and sun sensor, all supported by a

central computer, can autonomously navigate SEPS to position accuracies of

about +1 km and +.l m/sec of desired velocities. Given these autonomous

navigation and guidance accuracies, the only demands on STDN during this 57-

day period are weekly status checks on SEPS' actual status versus its predicted

status.

Payload data requirements may dictate more frequent STDN data link usage.

Many payload developers will have facilities such that for appreciable parts

of the trip time direct communications with SEPS will be possible.

Because of SEPS' low acceleration it does not use phasing orbits, but it

is started on trajectory profiles so that continuous thrusting for the minimum

length of time will bring it to the desired rendezvous or payload deployment

point. The terminal phase of SEPS approach to a target point for deployment

of a payload (or to a rendezvous) is just an extension of the cruise phase as

indicated on Figure 2-7a. For sunlit targets the SEPS, with information from

the ground as to target payload position, can acquire the target at distances

up to 3,900 nautical miles and begin path adjustments. Figure 2-7a shows the

relative motion of SEPS approaching a target geosynch payload when only the

ion thrusters are used in order to conserve ACS propellants. Times are times

before station alongside the payload at relative velocity 0. The arrows

indicate the direction of thrust. Figure 2-7b shows added tetails of the last

few hours.

The flight control center would not need to be fully manned prior to

about 2 hours before payload deployment or retrieval was to begin. Conversely,

if it is desired to compress the last 6 hours of the operation, ACS thrusters

can be utilized. These thrusters combined for additive thrust in the same

direction as the ion system, provide about 100 times the acceleration of the

ion system. ACS produced acceleration is .02 to 0.1 m/sec 2 depending on

payload mass.
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Figure 2-7. SEPS RELATIVE MOTION APPROACHING TARGET

2.4 MISSION ROLES FOR SEPS IN ACCOMPLISHING NASA REFERENCE MISSION
MODEL

The reference mission model was derived from "The October 1973 Space

Shuttle Traffic Model" (NASA TMX-64751 Revision 2 dated January 1974) by
considering all flights from year 1981 through year 1991. SEPS functions in
accomplishing the mission model are summarized as follows:

* SEPS/Tug combined missions to geosynchronous orbit with intermediate
orbit payload deliveries comprised 124 payload deployments or retriev-
als which represented 93 percent of all geosynchronous payload missions
and 47 percent of all intermediate orbit payload missions

* SEPS accomplishes four of the 16 planetary missions. Because backup
planetary spacecraft are flown, the four missions require eight SEPS
launches

* Tug alone accomplishes only 7 percent of the geosynchronous missions,
but 53 percent of the intermediate orbit missions

2-20



NORTHROP SERVICES, INC. TR- 1370

* Low earth orbit missions are feasible for SEPS but we found no signi-
ficant cost savings for this transport role.

A summary of the total mission model and SEPS utilization in accomplishing it

is shown in Table 2-1.

Table 2-1. ACCOMPLISHMENT OF PAYLOAD MISSIONS
REQUIRING UPPER STAGES

Total Payload Missions 879

* Shuttle Only 644

* Requiring Upper Stage : 235

MISSION DIFFERENT TUG WITH SEPS
MISSION TUG ALONE P O_ _IN EACH PAYLOAD RENDEZVOUS
CATEGORY CATEGORY TYPES No. % No. %
GEOSYNCHRONOUS 133 17 9 7 124 93
ESCAPE 45 22 39 87 6 13
POLAR EO 33 5 33 91 0 0
HIGH ENERGY EO 9 3 9 100 0 0
INTERMEDIATE EO 15 2 8 53 7 47

TOTAL 235 49 95 40 137 58

Mission roles for SEPS with the Space Transportation System are seen to

be predominantly in the geosynchronous orbit delivery, retrieval, and payload

servicing area. In the study NSI was directed to establish cost effectiveness

of an earth orbital SEPS strictly on the basis of direct transportation cost

savings. Many other obvious benefits occur from SEPS capability. Direct

transportation cost savings derive from the fact that with SEPS the required

number of earth orbital Shuttle-Tug flights is 15 less than required to accom-

plish the mission model without SEPS. Other minor factors such as fewer

expended IUS and kick stages result in a net transport cost saving of $126

million after all earth orbital SEPS development, production, startup, and

operations costs are amortized. The $126 million saved represents a 217

percent return on the delta $58 million investment in SEPS for earth orbital

operations. These cost savings do not consider any of the special benefits

which SEPS provides in addition to cheaper transportaiton service. The total

STS with SEPS Operational Profile to accomplish the mission model is shown on

Figure 2-8. The comparison of cost for all earth orbital STS transport func-

tions with and without SEPS in the earth orbital role are summarized in Table

2-2.

2-21



NORTHROP SERVICES, INC. TR- 1370

THIS PAGE INTENTIONALLY LEFT BLANK

2-22



TR-1370
NORTHROP SERVICES, INC.

40000- SEPS THRUSTERS 20,000 HR LIFE
SORTIE LEGS INCLUDE SEPS ORBITAL
"TAXI" TIME.

WHEN DESIRABLE TUG/SEPS CARRIES
INTERMEDIATE ORBIT PAYLOADS TO/

rGEOSYNC -' F -I F IFROM SEPS-TUG RENDEZVOUS ORBIT.

BASELINE STS
9.1M H2/O2 TUG 1984 ONWARD

I IUS (STRETCHED TANK TRANSTAGE)
2 ' FROM 1981 THROUGH 1983
I, I GPME AS RECOMMENDED IN STUDY

U30000--N

I I
I- TRAJECTORYLEGEND

I ( i II I SEPS # 1

,,,\ SEPS # 2 ----

SIll SEPS# ---

o I iR2-2

FRF 2-3 1

10000
LAUNCH SEPS #2 RECOVER SEPS #2

PLANETARY SEPS RE SEPS SEPS 1 LAUNCH SEPS #3 LAC EFB-

E.O. SEPS #1 #1 & 2 ENKE APRIL 25, 1986 OCTOBER 1989 LAUNCH REFURBISHED

JANUARY 1, 1981 
18RENDEZVOUS

Sr. PLANETARY SEPS

PLANETARY SEPS PLANETARY SEPS #7 & 8 MERCURY
#3 & 4 JUPITER #5 & 6 ASTEROID ORBITER
ORBITER RENDEZVOUS

PROGRAM
TOTALS

SHUTTLE 19 22 28 27 33 32 30 32 30 30 32 315

SHUTTLE/TUG 6 2 8 11 13 12 11 4 6 9 10 92

SHUTTLE/TUG/ 2 1 2 2 2 3 2 4 5 5 2 30
EO SEPS

YEAR 1981 1982 1983 1984 1985 1986 1987 1988 1989. 1990 1991 437-

Figure 2-8. SYSTEM OPERATIONAL PROFILE (9.1-METER BASELINE TUG + 25 KW
SEPS WITH 20,000 HOUR THRUSTER LIFE - REFUELABLE)

F.0 ,pEOUTT- . FRAMEW 2-23/2-24 ;
, -- 'LDOUTPRECEDING F EPAGE

PECEDING PAGE BLANK NOT FILMED



NORTHROP SERVICES, INC. TR-1370

Table 2-2. STS COMPARED TO STS WITH SEPS FOR TRANSPORTATION COST
EFFECTIVENESS -- EARTH ORBITAL FLIGHTS REQUIRING UPPER
STAGES

BLSTS BLSEPS
BLSTS (20 KHR-REFUELED)COST ELEMENT

(DOLLARS IN MILLIONS) 106 $ NUMBER 106$ NUMBER

SHUTTLE FLIGHTS @ $11.09 1508. 136 1342. 121

IUS EXPENDED @ $5.17 103. 20 98. 19

IUS WITH KICK STAGE @ $6.37 13. 2 13. 2

TUG RECOVERED FLTS @ $.96 87. 91 74. 77

TUG RECOVERED EXPENDED KS
@ $2.16 15. 7 15. 7

TUG EXPENDED @ $14.16 0. 0 0. 0

TUG AND KS EXPENDED @ $15.36 92. 6 92. 6

TOTAL TRANSPORTATION COST 1818. 1634.

$ SAVED IN TRANSPORT COST -- 184.

VEHICLE INVENTORY COST SEPS
@ (VARIES WITH PRODUCTION) 110. 9* 146. 11**

SEPS DEVELOPMENT & OPERATIONS 122. 144.

TOTAL SYSTEM COST 2050. 1924.

NET $ SAVED -- 126.

*8 PLANETARY VEHICLES PLUS ONE SPARE

**8 PLANETARY VEHICLES PLUS ONE SPARE PLUS TWO EARTH ORBITAL VEHICLES

In the above comparisons the STS operating without SEPS was given every

advantage to assure that its full potential was utilized. No constraints were

placed on Tug operating alone in regard to the number of payloads Tug could

return in a single trip even though Tug would have to have equipment not

presently planned for it that is capable of multiple payload retrieval. This

equipment might be similar to a SEPS manipulator set plus a payload transport

shell. Any of the practical alternates we investigated had nearly equivalent

weight and complexity but a great deal less mission flexibility. Transport

assumptions favorable to STS operating without SEPS in a transport role were:

* Tug payload transport and retreival gear weight total was only 136 kg
(more realistic weight penalties are 272 kg).

* All multiple payloads retrieval flights had payloads collected at one
point by some arbitrary means, so Tug did not have to taxi around
geosynchronous orbit to collect them.
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. All multiple payloads to geosynchronous orbit were deployed at one
location in geosynchronous orbit and the payloads provided their own
propulsi've power to move to their final mission locations.

In other studies conducted on STS without SEPS, various analysis groups

have made arbitrary assumptions as to the payload packaging geometry that

would be allowed for multiple payload flights and also as to the total number

of up and down payloads to be allowed on one flight in order to reflect Tug's

limited ability when not equipped with payload handling gear such as SEPS'.

The effect of some of these assumptions on Shuttle flights required to accom-

plish the mission with and without SEPS as a transport element are shown in

Table 2-3.

Table 2-3. COMPARISON OF STS FLIGHTS REQUIRED VS ALLOWED

PACKAGING SYSTEM TO ACCOMPLISH ALL MISSIONS

REQUIRING UPPER STAGES

THREE THREE
STS VARIANT/PACKAGING SYSTEM TANDEM SIDE BY SIDE DIMENSIONAL DIMENSIONAL

BASELINE STS 156 150 150 136

STS WITH SEPS 146 129 125 121

STS FLIGHTS SAVED 10 21 25 15

NOTES: 1. Number of payloads for Tug operating alone limited to three up and one down on each sortie for
all cases except those in the last column

2. General purpose mission equipment designs evolved in this study make any number of payloads
per sortie feasible up to STS volume or mass limits

3. SEPS high performance essentially removes payload weight per sortie limits
4. Available payload volume in Orbiter cargo bay becomes the significant limiting factor.

NSI therefore believes that the cost saving equivalent to a reduction in

Shuttle-Tug flight requirements by 15 flights is an extremely conservative

estimate of transportation savings occurring from operation of the SEPS as an

STS transport element. NSI believes that considerably more than the previously

presented 217 percent return on EO SEPS development and operational startup cost

investment would be achieved for actual operations conducted under the general

management and operational concepts described in this study final report.

2.5 SEPS BENEFITS TO THE IUS, TUG, AND PAYLOADS

In addition to the transportation cost saving defined earlier, SEPS

provides other programmatic cost savings and operational simplifications.
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RELATIVE TO THE INTERIM UPPER STAGE (IUS)

* IUS flight preparations are greatly simplified. Payloads can be
individually mounted into the transport shell. The multiple payloads
in the transport shell package can be checked for flight readiness
and combined with IUS in a single mating operation. IUS plus multiple
payloads are presented to Shuttle as a single payload.

* It is feasible to recover IUS on many missions if it is equipped with
the proper avionics equipment.

* The IUS if made recoverable is not required to have a navigation and
guidance system capable of active participation in rendezvous
operations. For SEPS rendezvous, IUS is targeted on SEPS and SEPS is
the active participant. For return, the Orbiter is the active partic-
ipant.

RELATIVE TO TUG

* Schedule and cost risk associated with high performance requirements
of the Tug program are removed.

* Tug operations are simplified. Multiple payloads are presented to
Tug as a single package ready for flight.

* Tug docking and payload interface, other than electronic may be
developed for a single payload interface rather than for multiple
docking and retrieval operations.

* Fifteen to 29 fewer Tug flights are required to accomplish the mission
model.

* Tug does not have to be designed for the long staytimes in space
necessary to perform orbital taxi missions for multiple payload
deployment or retrieval.

RELATIVE TO PAYLOADS

* Reduction in transportation cost prorated to each payload. Average
number of payloads per flight with SEPS is approximately four and
for Tug alone is less than two.

* Essentially removes weight restrictions for payloads. Development
cost increases to solve missed initial program weight goals will not
be incurred.

* Higher initial payload weight allowances can be used to reduce devel-
opment cost, improve reliability, or to provide for functional capa-
bilities not feasible for payloads delivered by Tug alone.
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0 SEPS can deploy various payload elements (or refold them for retrieval)
either as a backup to payload on-board systems or to relieve the
payload entirely from self-deployment requirements. This should
considerably reduce the development cost of some payloads.

* Most payload failures prior to end of design life are of the infant
mortality type. SEPS can maintain station alongside a recently de-
ployed payload with its TV cameras transmitting visual records of the
payload's deployment and initial functional test responses to the pay-
load developer's ground control commands. SEPS can assist in correc-
tion of the malfunctions. Upon ground command, SEPS can return the
payload on the next rendezvous with Tug, if onorbit correction of the
malfunction was not possible.

* SEPS can service payloads by providing for substitution of new sensor
packs, or different experiments that may extend the usefulness of
large optical or other instrument platforms without requiring their
recovery or replacement in space.

* SEPS can provide replenishment services for payload expendables.

* For planetary missions, SEPS allows significantly greater payload
mass and may provide power, communication, attitude, and thermal
conditioning support to the payload. For some planetary orbiting
payloads, SEPS can modify orbital parameters to conduct complete
surface mapping operations plus mapping of fields and particle physi-
cal phenomena in space around the planet.

* Combination of science packages with SEPS can provide nearly ideal
spacecraft for comprehensive surveys and continuous monitoring of
earth's magnetosphere and near earth solar system space. "Out-of-the-
ecliptic" missions are examples of the latter. New spacecraft do not
need to be developed for these missions. SEPS itself may be consid-
ered a "standard" spacecraft.

* Where the scientific objectives require mission orbits so greatly
separated in energy level that it is not practical to provide space-
craft propulsion to accomplish the change, SEPS can taxi the space-
craft to its new orbit thus saving a new Shuttle launch.

2.6 NEW MISSION APPLICATIONS FOR SEPS
This study, by work statement requirements, was directed primarily toward

earth orbital mission roles, development of payload handling concepts, and

analysis of operation support requirements. Roles in accomplishing the mission

model with STS were described in some detail. Other potential applications of

SEPS are:

* As a mobile spacecraft host supplying power to a direct broadcast,
emergency communications satellite for remote oil exploration sites,
or family units and villages in remote areas of the world. The system
would provide one-way TV and two-way voice communication channels.
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Support and provide space mobility for a high resolution earth obser-
ving satellite providing high data rate real time information on
weather or other local phenomena. High resolution optics and other
sensors could switch systematically from locality to locality pro-
viding detailed scan information for each area for the time the local
area was under observation.

* Collection of space debris and removal from frequently used areas of
near earth space by return to ground via Shuttle and Tug or transfer
by SEPS to higher infrequently used space areas.

* Transportation of very large space structures from their initial
assembly positions in low earth orbit to final functional positions.

* Mobile teleoperated assembly device for construction of large space
structures.

2.7 TRADE STUDIES AND TECHNOLOGY ASSESSMENTS

As in all systems, trade studies can be conducted at every level of the

system's functional design detail. A principal objective of this study was to

establish the first level trade of any system; namely, is its existence and

operation justified on the basis of cost effectiveness, other identifiable

benefits, and predictable future benefits?

The priority and scientific work of the planetary, cometary, and solar

space exploration missions justifies initiation of the basic SEPS program.

Investigations conducted during this study indicate that a reasonable case for

initiation of the program can be made solely on the basis of its value for

earth orbital missions and its cost effectiveness as an element of the Space

Transportation System. NSI believes the combination of values for solar

system exploration and earth orbital applications justifies high priority for

early implementation of a SEPS development program.

Given a baseline SEPS, high cost effectiveness from its operation as an

element of STS was established. Within the scope of this study it appeared

that several major configuration trade studies and reassessments of baseline

subsystem definitions were warranted.

The major trade study was evolution of the General Purpose Mission Equip-

ment (GPME) concepts that simplify Tug operations with multiple payloads,
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simplify Shuttle Orbiter interfaces, and also provide SEPS with a highly

flexible payload support and servicing subsystem. The results of that study

evolved the concept presented earlier. The key element of the concept was

SEPS manipulator system. Alternate systems considered are described in Volume

II. Considerations leading to the selection are summarized in Table 2-4.

Table 2-4. PAYLOAD SUPPORT, HANDLING, AND SERVICING
CONCEPT COMPARISON

ARTICULATED DOCKING TRANSPORT SHELL, TRANSPORT SHELL,
FRAME AND ARTICULATED EXPENDABLE BOOM AND PAYLOAD MAST AND
MULTIPLE PAYLOAD SIMPLIFIED MANIPULATOR MANIPULATOR SYSTEM
SUPPORT STRUCTURES

ADVANTAGES ADVANTAGES ADVANTAGES

* SIMPLEST ONBOARD * MODERATE ONBOARD * GREATEST INHERENT
SOFTWARE SOFTWARE REQUIREMENT CAPABILITY FOR PAYLOAD

* SIMPLEST PAYLOAD SERVICES AND

DISADVANTAGES TRANSFER FUNCTION MAINTENANCE

* MINIMIZES DESIGN CON-
* MOST COMPLEX FLIGHT STRAINTS ON PAYLOADS

OPERATION DISADVANTAGES STRAINTS ON PAYLOADS
* SIMPLEST AND MOST FLEX-

* MOST COMPLEX FLIGHT * LIMITED SERVICING IBLE INFLIGHT OPERATIONS
HARDWARE AND ONORBIT

* LIMITED GPME - REQUIRES MAINTENANCE ABILITY * SIMPLEST GPME & TUG PAY-

TAILORING OF TUG * INTERMEDIATE LOAD INTEGRATION
MISSION EQUIPMENT & ADAPTABILITY TO
ORBITER TO PL ADAPTERS UNPLANNED MISSION * HIGHEST MISSION SUCCESS
FOR EACH SORTIE EVENTS PROBABILITY

* EITHER SERIOUS PL
DESIGN CONSTRAINT OR DISADVANTAGES
VERY LIMITED SERVICING * ONBOARD SOFTWARE
ABILITY REQUIRES 32K WORD

* NOT ADAPTABLE TO UN- MEMORY STORAGE
FORESEEN OR UNPLANNED
MISSION EVENTS

* TOTAL COMPONENTS
REQUIRING POSITIONING
& FEEDBACK INFO EXCEED
OTHER SYSTEMS

CHOICE OF SEPS POWER LEVEL

The next most significant configuration definition choice is associated

with SEPS power level. The decision becomes largely a matter of judgement

since no clear mission requirement sets a definite minimum power level in the

range of practical choices and no technology factor or cost factor produces a

sharp step in development difficulty or cost as power increases.
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The transport capability and oeprational flexibility of SEPS with the STS

is almost directly proportional to power level. To demonstrate this, NSI

,developed complete System Operational Profiles for accomplishing the reference

mission model. The 25 kw NASA baseline profile was shown on Figure 2-8.

Figure 2-9 shows the sortie trip times required by a 25 kw SEPS to accomplish

delivery and retrieval missions in conjunction with a 9.1-meter H2/02 high

performance Tug. The solid curves are the theoretical times required for

SEPS to complete a mission with the maximum payloads that Tug could bring to

the SEPS/Tug rendezvous orbit for the Tug one-way velocity increments shown

by the abcissa.

The cross-hatched areas indicate the range of Tug velocity increments

actually required to accomplish the mission model. The black dots are individ-

ual sortie trip times calculated with radiation degredation effects, and so

forth. Figure 2-10 shows the sortie trip time savings of a 50 kw SEPS relative

to the 25 kw SEPS. The system operational profile, as illustrated on Figure

2-8, does not utilize the full capability of a 25 kw SEPS until 1989 and does

not require two SEPS on orbit until 1990. Therefore, use of a 50 kw SEPS

saves only 2 more shuttle flights than a 25 kw SEPS. The advantage of increased

power for earth orbital operations with the reference mission model is there-

fore due only to:

* Reduction of the time required for execution of individual sorties

0 The speed with which SEPS could respond to unplanned revisions of
flight schedules

* Quick response to special demands for maintenance and/or retrieval of
malfunctioning satellite.

Conversely, the DDT&E cost to develop a 50 kw SEPS was estimated by NSI to be

only 7.5 percent greater than for a 25 kw SEPS so that a very small additional

investment produced a transport vehicle of nearly twice the inherent capa-

bility. Figure 2-11 shows a size comparison between 50 kw and 25 kw power

level SEPS. Table 2-2 shows a summary of DDT&E cost breakdown with the incre-

mental cost for development of the 50 kw system. Note that cost increase is

essentially all in propulsion areas. The majority of that cost is due to the
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present high cost of solar cells which can be drastically reduced with a

technology/production process program directed to cost reduction.

For the planetary missions the rate of gain in usable net scientific

payload as power level increases varies considerably with the mission. In

addition, the gains are sensitive to the mass-to-power ratio so that design

approaches for SEPS thruster subsystem that result in high mass-to-beam power

ratio or unjustifiably conservative mass estimates will cause apparent "optimum"

power levels to be considerably lower than the true optimums. Even on the

most conservative basis for mass-to-power ratio, such as used in Rockwell

International 1972 and 1973 studies, trends for continuing growth in available

net payload are indicated as power levels extend beyond 25 kw.

The panetary science packages conceived for most of these missions do not

indicate the need for the higher payloads associated with the higher powers

desirable for a SEPS operating in earth orbit. It is the opinion of this

author at least, that the planned sciences packages are rather minimal and

that a great deal more useful information would be obtained if the available

payload mass allowed by the higher powered SEPS were used to fly on the plane-

tary missions, some modification of the higher resolution, versatile sensors

and instruments contained in proposed satellites such as the Synchronous Earth

Observing Satellite (SEOS) and other environment determination and monitoring

satellites. Figures 2-12a and 2-12b present a review of typical planetary

missions from earlier SEPS work by Rockwell International. The curves that

show parametrically the influence of trip time and power level, the ordinates

labeled "Approach Net Mass" are all masses (SEPS nonpropulsive and gross

payload) in addition to the mass of the solar arrays and the thruster subsystem.

If a standard core SEPS were used as the spacecraft bus, the gross payload

would be approximately net mass minus 500 kilograms. For the Jupiter Orbiter

the payload must include the chemical retro rockets for capture maneuver into

a highly ellipitcal Jovian orbit.

The four sets of mission charts demonstrate two salient features. In all

cases, increased power increases payload. For the mission beyond 1 AU power,
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SEPS can provide only limited payload support power if developed at the 25 kw

of solar power level.

In the case of the Jupiter Orbiter mission, increased power beyond 25 kw

would allow SEPS thrusters to operate during the approach to Jupiter, aiding

in the capture maneuver, and also allow SEPS to modify the Jovian orbit for

close inspection of each Jovian moon. When not thrusting, more power is avail-

able for communications so that high resolution imaging can be conducted in

shorter periods of time. All of the RI work presented on Figures 2-12 was con-

ducted with very conservative mass-to-power ratios based on processing screen

power with the associated losses and weight penalties. The Jupiter missions,

which chemically retro SEPS into the capture orbit, will benefit greatly from

improved (lower) mass-to-power ratios.

Figure 2-13 shows NSI's analyses of SEPS potential for an exciting new

set of "out-of-the-ecliptic" missions that allow examination of the solar

magnetosphere and solar surface with high resolution instruments over the

SEPS INCLINATION O KWLBL Ip 312 J •EIS1

ADVANTAGES OF HIGHER POWER & Isp

::: 6 YEAR MIsI0N
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entire solar sphere. In the particular example shown, the SEPS is launched

by a Titan Centaur vehicle. The curves demonstrate the effect of three

parameters. The curve showing the higher heliographic inclination versus

mission time illustrates the advantages of increased power, better power-to-

mass ratio by taking thruster screen power directly from the solar arrays,

and the value of the option of operating at a factor of 2 greater (2200 Vs/

1100 Vs) thruster screen voltage to achieve an Isp of 4243 seconds rather

than a baseline 3,000 seconds. The higher achievable inclination for the

upper curve is due solely to the higher Isp and lower mass-to-power ratio

from direct use of solar array power for screen power.

A design approach similar to that used on the 50 kw system but at 25 kw

level would finally achieve the 80-degree inclination but in a much longer

trip time.

This discussion has not covered all the implications of Figures 2-9 and

2-10. Thoughtful perusal of these figures will indicate that desirable char-

acteristics for a standard core SEPS to achieve enhanced planetary mission

suitability are:

* Improved average thrust-to-mass ratios

* Option to operate at high or low Isp to match requirements of a
specific mission

* Reserve power to support larger payloads and higher communications
rates at extended distances from the sun.

* Maneuver power to extend scientific mission capabilities after
arrival at the target planet.

Improved average thrust-to-mass ratio can be achieved by:

* Increased solar array area and higher kw/kg values for the arrays
by fuller exploitation of present technology

* Taking thruster screen power directly from the solar arrays and
improving power processor efficiency for the remaining z20 percent
of the power

. Fuller utilization of the ion thruster's inherent capabilities
indicated by the last several years of NASA's technology program.
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RELATED TECHNOLOGY ASSESSMENTS

NSI has reviewed the available technology base derived from NASA's

thruster technology and research programs, has reviewed industrial develop-

ments of devices suitable for solid state power processing, and has reviewed

the literature on solar cell technology. The conclusions of this assessment

are:

Thrusters have the inherent ability to operate over screen voltage
ranges of about 800 v to more than 2800 v and at beam currents cor-
responding to .05 amp to 4 amps in a 30 centimeter thruster

* Solar arrays are both feasible and desirable direct sources of
thruster beam power

* Higher voltage solar arrays (400 v up to 1100 v) are both feasible
and desirable

* The potential exists for lower cost and higher reliability solar
arrays than those assumed in prior studies

* Higher voltage power processors than those baselined for prior
studies (200 v to 400 v) are feasible

* Exploitation of the technology base will provide a SEPS of signifi-
cantly greater mission flexibility than the baseline derived from
previous studies.
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Section III

IMPACT OF SEPS OPERATION WITH STS ON
ORBITER, IUS, TUG PHYSICAL

INTERFACE REQUIREMENTS

3.1 GENERAL CONSIDERATIONS

The delivery to or retrieval of SEPS from typical IUS/Tug payload transfer

orbits imposes no additional physical interface requirements since SEPS as an

individual payload to be delivered has very modest support requirements well

within the design capabilities proposed for IUS and Tug or those baselined for

the Orbiter.

Figure 2-8, the System Operational Profile, showed that only three

scheduled SEPS launches and one retrieval were required to accomplish the

reference mission model from 1981 through 1991.

SEPS augmentation of IUS-Tug transportation capabilities allows the use

of the GPME concepts described earlier, which greatly simplifies the Orbiter,

IUS, and Tug ground operations involvement in multiple payload delivery oper-

ations. The transport shell always presents a single structural payload

interface to the IUS, Tug, and Shuttle Orbiter. Because all payload inertial

loads are distributed into the shell which distributes the total load to

the Orbiter's cargo bay longerons in an acceptable way, loads on IUS and Tug

are lower than design limit loads derived from certain individual payloads

carried by IUS and Tug.

The additional interface requirements for STS elements therefore derive

from the fact that with SEPS in the system multiple payload cargo manifests

may contain up to seven or eight payloads instead of three to four. The

primary impact, as might be expected, is in the avionics support areas of

telemetry, command, and power supply.
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Other potential added demands are in the areas of propellant dumping,

venting, and RTG cooling, or other payload environmental factors. None of

these represent extra requirements since the character of the multiple pay-

loads with SEPS does not present a greater requirement than some of the more

complex single and dual payloads transported without SEPS. Manifolding of

multiple payload requirements on the transport stage results in interfaces

equivalent to a single payload.

Safety and interface discussions will be considered in the following

sequence:

* SEPS as one of a multiple payload group for delivery in terms of
Orbiter safety requirements and interfaces

* Multiple payload avionics potential requirements

* Gases and liquids venting and dumping requirement

3.2 SEPS SAFETY AND INTERFACE CONSIDERATIONS IN RELATION TO ORBITER

Figure 3-1 shows SEPS with other schematically represented payloads in

a transport shell with Tug in the Orbiter cargo bay. IUS would mount simi-

larly. The transport shells for IUS and Tug are essentially identical and

could be developed for interchangeability. SEPS is mounted on a standard

GPME diaphragm and has no direct structural interface with the Orbiter or

IUS-Tug.

SEPS, if nominally fueled for the initial deployment mission, has a mass

of about 2725 kilograms (6,000 pounds). SEPS contains only four fluids:

pressurizing N2, battery fluids, mercury, and hydrazine.

The pressurizing N2 for the mercury expulsion system has a peak charged

pressure of 58 N/m2 (40 psia). The N2 is contained inside the mercury propel-

lant tank; tank design limit load is controlled by the 9 g Shuttle crash

load factor. Design for containment to peak cargo bay temperatures is a

negligible mass penalty. Pressure relief venting to the cargo bay interior

is acceptable. No caution and warning (C&W) signals or control from the orbiter

is required.
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The N2 for ACS has a peak charge pressure of 290 N/cm 2 (200 psia) and

is also within the pressure shell of the N2H4 tanks. The tanks contain 109 kg

(240 pounds) of N2H4 . The tanks will be designed for containment of N2 and

N2H4 at peak cargo bay temperatures. Backup N2 pressure relief vent to the

cargo bay will be used for added safety. No propellant dump for this quantity

of N2H4 is required. No C&W or command lines to or from the Orbiter are required.

Because of the space thermal requirement both propellant tanks are insu-

lated. No condition that has not destroyed the Orbiter will cause monopro-

pellant decomposition of the N2H4 in SEPS.

SEPS, like most long-life spacecraft, uses Nickel-Cadmium batteries

which are sealed. The batteries will be designed for containment. No C&W

or command lines to or from the Orbiter are required.

SEPS is designed to have no separation or deployment ordnance. All sepa-

ration functions are controlled by reversable motors or with the aid of the

manipulators. Orbiter may derive status information and command control for

latchings.

3.3 IUS-TUG AVIONICS SUPPORT TO SEPS

NSI believes the most desirable approach to avionics support for all pay-

loads mounted on Tug is from Tug, since the support must be continued after

separation from the Orbiter. During ascent, Orbiter must support Tug by pro-

vision of primary power and data links into the Tug.

The following requirements for avionics support of SEPS from Tug exist:

* During prelaunch after transport shell has been mated to Tug and
after installation in Orbiter:

* 150 watts power and 1,000 kbits/sec digital data during brief
flight readiness status check periods. Thermal control power
of about 200 watts could be required depending on temperature
of Orbiter's N2 purge gases

* During Orbiter ascent:

* Nominally no support; 200 watts periodically if required for
thermal control
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e During Tug deployment, parking

A orbits and ascent to SEPS init-
ial parking orbit:

* 200 watts primary power
for thermal control

INITIAL ORBIT FOR SEPS DEPLOYMENT . SEPS initial startup and trans-
fer of initial payload to SEPS
payload mast:

* 600 watts, 10,000 bits/sec
digital TV data and telemetry.
Uplink data rate 10 kbits/
sec. This support require-
ment would last approximately

DEPLOY PAYLOAD MAST ARMS 1 hour. 1000 watt peak
RELEASE DIAPHRAM LOCK power required. Total

energy required 3 kw/hr.

This deployment and initial payload

transfer sequence is shown schematically

oNE ARM FORTV on Figure 3-2. All of the above require-
VISIBILITY AND ONE

FOR REMOVAL OFPLSET ments are within Tug proposed capability.

As indicated on Figure 3-2, one of the
THIS ARM
PLACING SEPS phased array antennas is exposed
PL ON MAST

D and SEPS' own systems can supply the

capability.

3.4 TUG-IUS SUPPORT TO PAYLOADS
THIS ARM PROVIDING IN TRANSPORT SHELL
TV VISION OF MAST

McDonnell Douglas and General

Electric, teamed for the MSFC directed

"IUS/Tug Payload Requirements Compati-

E bility Study," reported in their midterm

review the results of a payload design

engineering committee analysis to deter-

mine nominal, maximum, and minimum
SEPSDEPLOYIN WINGSARTURE RETUADY FOR SHUTTLE values of Tug payload support requirements.

Figure 3-2. PAYLOAD TRANSFER
INITIAL SEPS SORTIE
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The peak power and peak data rates are part of the final deployment functional

checks and would be conducted on SEPS after SEPS had achieved the payload

mission deployment conditions. SEPS, in this case, relieves Tug of ever

having to meet the peak power and data rate requirements indicated by the

committee analysis.

In further analysis the committee changed their approach to checkout test

while still onboard a transport vehicle. Only payload status checks will be

conducted until the payload spacecraft are deployed. All spacecraft payload

demands indicated are therefore reduced to data rate levels of =1 kbit/sec and

power levels to 200 or less watts. SEPS data rate capabilities are in the

megabit range so this poses no problems for SEPS.
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Section IV

PROGRAM SUPPORT AND COST ESTIMATES

4.1 PROGRAM SUPPORT

SEPS is relatively simple. It is nearly all electrical. It has compact

dimensions for transport and storage. Very modest buildings and checkout

equipment will support its few launch preparation and refurbishment activities.

The largest cost in SEPS operations is for mission planning and flight control

personnel. These personnel must know SEPS configuration, functions, subsystems,

and components in detail. The personnel that support the launch preparation

functions, the one or two refurbishments, and the sustaining engineers must

know the system intimately.

Reference to Figure 2-7, the system operational profile shows that in

11 years there are only eight planetary and three earth orbital launches to

accomplish the reference mission model. There is only one SEPS refurbishment

for relaunch. There are only 29 earth orbital sorties by SEPS over the

11-year period. Recall the SEPS autonomous cruise and autonomous terminal

approach phase of the rendezvous (when desired) capability so that a sortie,

typically 90 days or less total time, has only four periods of peak activity

where the mission planning and flight control crews are fully utilized. These

periods of peak activity are associated with the following functions:

0 Detail planning of the next sortie in conjunction with the payload
sponsors and developers and Shuttle flight planners.

* Systematic retrieval of the payloads to be returned to earth by
Tug and orbiter, and intiation of the cruise phase down to the Tug
rendezvous orbit

* Rendezvous with Tug, delivery of down payloads, acceptance of up
payloads, and initiation of the ascent cruise phase to deploy up
payloads at their mission conditions

* Deployment of payloads at their mission station and performance of
servicing functions for any other payloads requiring that function.

Readers interested and experienced in mission planning and flight control

recognize those four functions in past space experience as time consuming and
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demanding of a large investment in man-hours. For this SEPS group however,

the longest involvement of any intense activity is with the payload sponsors

in the detail mission planning. Other functions require two to three days'

full utilization of a 16-man team around some key flight operation. A small

investment in time and people (in spite of past experience) can accomplish in

the SEPS program the four functions described on the preceding page, because:

* 13.2 million dollars is allocated for initial onboard software
($4.5 M) and flight control center ($8.7 M) software to automate the
mission planning and flight control

* The group does only the SEPS specific detail planning. Two other
principal groups providing controlling event sequences and system
function timelines to which SEPS must perform. The advance planning
input comes from the Shuttle/STS Utilization and Master Scheduling
Center. The detailed specific mission timeline event sequence for
activities influencing Shuttle is established by the Shuttle
Operations Center.

In view of the above factors, NSI believes that a small 45-man team, or-

ganized as shown on Figure 4-1, can accomplish the complete program support.

Volume III of this series, Design Reference Mission Description and Program

Support Requirements, discusses the subject in some detail.

SEPS transportation, due to its small packaged size (3m x 3m x 5m) and

light unfueled packaged mass (2 tons), is convenient and inexpensive. The
total supporting equipment and facilities investment is about $8.8 million,

$5.3 million of which are allocated to computers and peripheral equipment.

Computers are underutilized except for the previously defined periods of peak

activity and could be utilized by the SEPS operations center (SEPSOC) host

institution for its other functions. If the host center has available com-

puter capacity for SEPS part time utilization, only $3.5 million is required

for the SEPSOC facility and equipment. The required initial software package

cost was estimated at about $8.7 million.

Because of the above factors, NSI believes that SEPSOC facility and

equipment cost factors could not control the location of SEPSOC. To accom-

plish the program cost savings indicated by the 45-man total program support
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PROGRAM MANAGER
PROGRAM CHIEF ENGINEER
(2) Total Group 45

LAUNCH SITE ADMINISTRATIVE SUPPORT
DETACHED STAFF(3) STAFF (3)

VEHICLE SYSTEMS ENGINEER FLIGHT OPERATIONS DIRECTOR FLIGHT CONTROL
(1) (Group Total 15) (1) (Group Total 12) FACILITY DIRECTOR(1) (Group Total 12)

SUSTAINING ENGINEERING AND MAINTENANCE MISSION PLANNING AND SIMULATION DATA SYSTEM MANAGEMENT
DIRECTION FOR SEPS AND ASSOCIATED GSE

REAL TIME MISSION SUPPORT COMPUTER OPERATIONS MANAGEMENT

FLIGHT OPERATIONS CONTROL OF SEPS (PRINCIPALLY COORDINATION OF

SUBSYSTEMS NEW SOFTWARE DEVELOPMENT AND PRIORITIES AND SCHEDULE WITH A
MAINTENANCE NONDEDICATED COMPUTER COMPLEX)

SUSTAINING ENGINEERING AND MAINTENANCE
DIRECTION FOR CONTROL CENTER CONSOLES DATA TRANSMISSION LINE MANAGEMENT

SOFTWARE DEFINITION/GENERATION FOR I CONTROL CENTER MAINTENANCE

CHECKOUT, MONITORING, AND OPERATION OF
SEPS SUBSYSTEMS FLIGHT DYNAMICS ENGINEER (6)

LAUNCH PREPARATION AND LAUNCH SUPPORT SOFTWARE MANAGER (5)

FLIGHT SUPPORT DIRECTOR (2)

DATA SYSTEM MANAGER (61
PROPULSION AND MECHANICAL SYSTEMS

ENGR (4) CONTROL CENTER MAINTENANCE (3)

AVIONICS SYSTEMS ENGINEER (4) r- -
PAYLOAD TRANSPORT/SERVICING SYSTEMS I ENTIRE GROUP SUPPORTS A RENDEZVOUS AND

ENGR (5)1 PAYLOAD TRANSFER OPERATION. FCC
(THESE MEN ARE ALSO THE SEPS PILOTS ; STAFFING DURING THIS PERIOD IS 16.
FOR RENDEZVOUS AND MANIPULATION
OPERATIONS)

Figure 4-1. SEPS PROGRAM SUPPORT ORGANIZATION

team, the SEPSOC must be located at the center that is given the total program

responsibility for SEPS.

4.2 PROGRAM COST SUMMARY

The cost estimation assumptions used in the analysis are as follows:

There will be a single SEPS DDT&E and production program managed by one

organization. The basic core vehicle will be capable of accomplishing either

the earth orbital functions or the deep space mission when certain components

and sensors are added. This will, on occasion, result in SEPS implementing

missions which do not require its full capability in solar array power or

thrusters. NSI strongly believes it is false economy to have tailored, reduced
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capability vehicles just to save a few hardware production dollars on a

specific production vehicle. Therefore, the single DDT&E program will phase

into production at the most economical rate for the total inventory. Each

SEPS, after production, will undergo a rigorous flight readiness check as a

part of the final acceptance testing. Then it will be stored in a hermeti-

cally sealed, inert gas filled container with its status check and power supply

hardlines used in ascent flight carried through the container walls to a test

umbilical. As each SEPS is completed, accepted, and installed in its storage

container it goes to the launch site for immediate launch or to the SEPSOC

for inventory storage.

When production of inventory and refurbishment spares are complete, the

DDT&E/production contract is terminated. There is no sustaining engineering

support team at any contractor or subsystem supplier's plant included in these

cost estimates after production is complete. This does not preclude NASA

from electing to have SEPSOC operated by a contractor and the DDT&E contractor

may be the successful bidder for the SEPSOC support.

It is management wise and technically feasible that the 45-man program

support team at the SEPSOC make any modifications or system changes found

later in the program to be absolutely necessary.

Other assumptions are:

* Production is continuous for 11 vehicles. The first vehicle is
delivered 30 months after authority to proceed (ATP).

* All $ are 1974 $.

* There are four planetary missions, each flown with a backup space-
craft requiring a total of eight planetary SEPS. Only two EO SEPS
are required. One production spare is planned and the integrated
system test article is refurbished at the end of production to
provide a second spare.

* One refurbishment is included in the cost estimates which would
extend the SEPS capability beyond the 1991 operational time
groundrules for this cost effectiveness study.

* No costs are included for mission special planetary spacecraft
sensors.

* The center given responsibility for the science package and mission
operation will assume flight control of SEPS and the science package
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at some time after cruise mode is established for the initial planetary
trajectory. Only periodic advice or consultation from SEPS vehicle
systems specialists will be provided on request of the planetary con-
trol groups after cruise mode is established.

Table 4-1 presents the SEPS total program costs including planetary

vehicle core development costs and the launch support operation for eight

planetary vehicles.

Table 4-1. SEPS TOTAL PROGRAM COST SUMMARY

STAGE DDT&E 97.5

EO Functions (Transport Mast & Manipulators) (8.3)
Basic Stage (89.2)

STS GPME DDT&E 2.5

PL Shell & Diaphragms

FLIGHT ARTICLE PRODUCTION 145.9

8 Planetary Vehicles (97.6)
3 EO Stages (39.6)
STS GPME
Stage Refurbishment and Maintenance

SEPS OPERATIONS CENTER INITIAL COSTS 17.9

Facility and Equipment 8.8)

Initial Software Package .7
Initial SEPSOC Spares (0.4)

SEPS SYSTEMS OPERATIONS 26.2

Personnel (45 men 11 years) (23.7)
Computer Support (2.1)
Flight Article Consumables (0.4)

TOTAL PROGRAM COSTS 290.0

Table 4-2 is the DDT&E cost broken down by major subsystem and functional

area of the program.

Figure 4-2 shows the prime contractor's total manloading versus time for

DDT&E and production for the first 36 months of the contract. Beginning at 30

months into the contract, SEPS are delivered at the rate of three per year

until delivery of the 12th SEPS (the refurbished test article). Total DDT&E

plus production duration is approximately 6 years.
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Table 4-2. DDT&E COST BREAKDOWN

TOTAL CORE PLANETARY EO
DDT&E VEHICLE PECULIAR PECULIAR

STRUCTURES & THERMAL CONTROL $ 4.8 S 4.8

PROPULSION 9.1 9.1

POWER DISTRIBUTION 1.0 1.0

SOLAR ARRAY 7.8 7.8

DATA MANAGEMENT 3.4 3.4

COMMUNICATION 2.2 1.4 $ 0.5 $ 0.3

NAVIGATION & GUIDANCE/ATTITUDE CONTROL 9.2 6.0 2.2 1.0

INTEGRATION & TEST CHECKOUT 6.7 6.7

TEST HARDWARE 21.3 19.8 1.1 0.4

STAGE GSE 5.0 4.0 0.2 0.8

SOFTWARE 4.5 4.5

LOGISTICS 0.5 0.1 0.4

S.E.&I. 6.8 6.8

PROGRAM MANAGEMENT 6.9 6.9

BASIC SEPS 89.2 82.3 4.0 2.9

A FOR EARTH ORBITAL FUNCTIONS OR
(PAYLOAD MAST & MANIPULATOR) 8.3 8.3

TOTAL 97.5

350-

325-

275-

225-

200-

175- IDDT&E

50- .INWORK

O DELIVERY

2 4 6 8 10 12 '14 16 18 20 22 24 26' 28 30' 32 34 36

PROGRAM MONTHS

Figure 4-2. TOTAL SEPS PROGRAM MANLOAD MONTHS 1 THROUGH 36 ONLY

4-6



NORTHROP SERVICES, INC. TR-1370

Section V

RECOMMENDATIONS FOR ADDITIONAL EFFORT
TO DEFINE THE SEPS UTILITY

AND CONFIGURATION

Subsection 2.3 delineated a series of configuration decision controlling

factors and highlighted the fact that the selection criteria, within the next

five years at least, are not subject to technical/programmatic "optimization"

but are dependent upon a NASA policy decision. the configuration for selection

choices are to configure for:

A. The minimum to meet absolute needs for some reference mission model
specified by NASA

B. Cost effectiveness against a reference mission model considering only
transportation cost savings

C. Configure for cost effectiveness considering all functions SEPS can

provide plus addition of those low/moderate cost features that greatly
enhance functional capability and mission flexibility.

Until NASA policy selects one of these choices, further configuration design

studies and system definition studies are largely technology exercises.

NSI believes choice C is the appropriate one considering the fact that

mission models and payload configuration concepts are not only changing as the

value of new missions and concepts are recognized, but are also being changed

by payload sponsors and mission planners in response to STS evolving charac-

teristics. This latter change influence is undesirable since the payload

planners should be specifying desirable STS characteristics rather than compro-

mising payload capabilities and objectives to meet STS limitations that are

removable at modest cost by implementation of the EO SEPS program.

To implement choice C the following additional effort is recommended.

* Assess what desirable payload objectives are possible with increased
netpayload mass, and surplus power to support higher data rates and
higher resolution sensors. Assessment of the value of space mobility
for science packages enabling total surface mapping, mapping of

,magnetospheres, close inspection of planetary satellites, etc.
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* For earth orbital missions, similarly assess the value of improved
capability in meeting present payload objectives and the value of
achieving new objectives with the increased allowable payload mass
provided by SEPS.

* For payloads that are reasonably well defined, assess the value in
terms of cost for the deployment assistance, servicing, maintenance,
and retrieval abilities of a manipulator equipped SEPS configuration
similar to, or improved from, the concept evolved in this study.

* Provide a value assessment for cost savings resulting from a higher
power SEPS ability to execute missions in a shorter time, respond
quickly to needs for servicing, etc.

* Establish low development and low production cost design approaches
for the solar arrays, power processors, and thrusters.

* Investigate further the potential major cost reductions possible
through commonality of Tug and SEPS avionics systems.
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